296 research outputs found

    Succinct Representations of Permutations and Functions

    Get PDF
    We investigate the problem of succinctly representing an arbitrary permutation, \pi, on {0,...,n-1} so that \pi^k(i) can be computed quickly for any i and any (positive or negative) integer power k. A representation taking (1+\epsilon) n lg n + O(1) bits suffices to compute arbitrary powers in constant time, for any positive constant \epsilon <= 1. A representation taking the optimal \ceil{\lg n!} + o(n) bits can be used to compute arbitrary powers in O(lg n / lg lg n) time. We then consider the more general problem of succinctly representing an arbitrary function, f: [n] \rightarrow [n] so that f^k(i) can be computed quickly for any i and any integer power k. We give a representation that takes (1+\epsilon) n lg n + O(1) bits, for any positive constant \epsilon <= 1, and computes arbitrary positive powers in constant time. It can also be used to compute f^k(i), for any negative integer k, in optimal O(1+|f^k(i)|) time. We place emphasis on the redundancy, or the space beyond the information-theoretic lower bound that the data structure uses in order to support operations efficiently. A number of lower bounds have recently been shown on the redundancy of data structures. These lower bounds confirm the space-time optimality of some of our solutions. Furthermore, the redundancy of one of our structures "surpasses" a recent lower bound by Golynski [Golynski, SODA 2009], thus demonstrating the limitations of this lower bound.Comment: Preliminary versions of these results have appeared in the Proceedings of ICALP 2003 and 2004. However, all results in this version are improved over the earlier conference versio

    Three-dimensional acquisition and display system for ultrasonic imaging

    Get PDF
    Three Dimensional biomedical ultrasonic imaging is relatively in its infancy and many areas for application like tumor detection and identification, virtual surgery planning, among others are being explored. These techniques are expected to provide the medical community with improved diagnostic and analysis capabilities. In order to better understand the image capture and processing issues in these environments, it is necessary to design and implement a reference three dimensional image capture and processing system. In a research environment, the most optimal approach to designing such systems is to leverage existing two dimensional capture technologies and enhance their capabilities for three dimensional imaging. This thesis formulates and implements one approach to developing a three dimensional data acquisition and display system for ultrasonic imaging

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    Asymptotically Optimal Encodings for Range Selection

    Get PDF
    We consider the problem of preprocessing an array A[1..n] to answer range selection and range top-k queries. Given a query interval [i..j] and a value k, the former query asks for the position of the k-th largest value in A[i..j], whereas the latter asks for the positions of all the k largest values in A[i..j]. We consider the encoding} version of the problem, where A is not available at query time, and an upper bound kappa on k, the rank that is to be selected, is given at construction time. We obtain data structures with asymptotically optimal size and query time on a RAM model with word size Theta(lg(n)): our structures use O(n*lg(kappa)) bits and answer range selection queries in time O(1+lg(k) / lg(lg(n))) and range top-k queries in time O(k), for any k <= kappa

    On Succinct Representations of Binary Trees

    Full text link
    We observe that a standard transformation between \emph{ordinal} trees (arbitrary rooted trees with ordered children) and binary trees leads to interesting succinct binary tree representations. There are four symmetric versions of these transformations. Via these transformations we get four succinct representations of nn-node binary trees that use 2n+n/(logn)O(1)2n + n/(\log n)^{O(1)} bits and support (among other operations) navigation, inorder numbering, one of pre- or post-order numbering, subtree size and lowest common ancestor (LCA) queries. The ability to support inorder numbering is crucial for the well-known range-minimum query (RMQ) problem on an array AA of nn ordered values. While this functionality, and more, is also supported in O(1)O(1) time using 2n+o(n)2n + o(n) bits by Davoodi et al.'s (\emph{Phil. Trans. Royal Soc. A} \textbf{372} (2014)) extension of a representation by Farzan and Munro (\emph{Algorithmica} \textbf{6} (2014)), their \emph{redundancy}, or the o(n)o(n) term, is much larger, and their approach may not be suitable for practical implementations. One of these transformations is related to the Zaks' sequence (S.~Zaks, \emph{Theor. Comput. Sci.} \textbf{10} (1980)) for encoding binary trees, and we thus provide the first succinct binary tree representation based on Zaks' sequence. Another of these transformations is equivalent to Fischer and Heun's (\emph{SIAM J. Comput.} \textbf{40} (2011)) \minheap\ structure for this problem. Yet another variant allows an encoding of the Cartesian tree of AA to be constructed from AA using only O(nlogn)O(\sqrt{n} \log n) bits of working space.Comment: Journal version of part of COCOON 2012 pape

    Fast and Simple Compact Hashing via Bucketing

    Get PDF
    Compact hash tables store a set S of n key-value pairs, where the keys are from the universe U = {0, ..., u - 1}, and the values are v-bit integers, in close to B(u, n) + nv bits of space, where B(u, n) = log2 ((u)(n)) is the information-theoretic lower bound for representing the set of keys in S, and support operations insert, delete and lookup on S. Compact hash tables have received significant attention in recent years, and approaches dating back to Cleary [IEEE T. Comput, 1984], as well as more recent ones have been implemented and used in a number of applications. However, the wins on space usage of these approaches are outweighed by their slowness relative to conventional hash tables. In this paper, we demonstrate that compact hash tables based upon a simple idea of bucketing practically outperform existing compact hash table implementations in terms of memory usage and construction time, and existing fast hash table implementations in terms of memory usage (and sometimes also in terms of construction time), while having competitive query times. A related notion is that of a compact hash ID map, which stores a set (S) over cap of n keys from U, and implicitly associates each key in (S) over cap with a unique value (its ID), chosen by the data structure itself, which is an integer of magnitude O(n), and supports inserts and lookups on S, while using space close to B(u, n) bits. One of our approaches is suitable for use as a compact hash ID map.Peer reviewe
    corecore